Truncated hemoglobin 1 is a new player in Chlamydomonas reinhardtii acclimation to sulfur deprivation
نویسندگان
چکیده
Truncated hemoglobins constitute a large family, present in bacteria, in archaea and in eukaryotes. However, a majority of physiological functions of these proteins remains to be elucidated. Identification and characterization of a novel role of truncated hemoglobins in the model alga provides a framework for a more complete understanding of their biological functions. Here, we use quantitative RT-PCR to show that three truncated hemoglobins of Chlamydomonas reinhardtii, THB1, THB2 and THB12, are induced under conditions of depleted sulfur (S) supply. THB1 underexpression results in the decrease in cell size, as well in levels of proteins, chlorophylls and mRNA of several S-responsive genes under S starvation. We provide evidence that knock-down of THB1 enhances NO production under S deprivation. In S-deprived cells, a subset of S limitation-responsive genes is controlled by NO in THB1-dependent pathway. Moreover, we demonstrate that deficiency for S represses the nitrate reduction and that THB1 is involved in this control. Thus, our data support the idea that in S-deprived cells THB1 plays a dual role in NO detoxification and in coordinating sulfate limitation with nitrate assimilation. This study uncovers a new function for the Chlamydomonas reinhardtii THB1 in the control of proper response to S deprivation.
منابع مشابه
Insights into the survival of Chlamydomonas reinhardtii during sulfur starvation based on microarray analysis of gene expression.
Responses of photosynthetic organisms to sulfur starvation include (i) increasing the capacity of the cell for transporting and/or assimilating exogenous sulfate, (ii) restructuring cellular features to conserve sulfur resources, and (iii) modulating metabolic processes and rates of cell growth and division. We used microarray analyses to obtain a genome-level view of changes in mRNA abundances...
متن کاملChlamydomonas Flavodiiron Proteins Facilitate Acclimation to Anoxia During Sulfur Deprivation
The flavodiiron proteins (FDPs) are involved in the detoxification of oxidative compounds, such as nitric oxide (NO) or O(2) in Archaea and Bacteria. In cyanobacteria, the FDPs Flv1 and Flv3 are essential in the light-dependent reduction of O(2) downstream of PSI. Phylogenetic analysis revealed that two genes (flvA and flvB) in the genome of Chlamydomonas reinhardtii show high homology to flv1 ...
متن کاملRNA-seq analysis of sulfur-deprived Chlamydomonas cells reveals aspects of acclimation critical for cell survival.
The Chlamydomonas reinhardtii transcriptome was characterized from nutrient-replete and sulfur-depleted wild-type and snrk2.1 mutant cells. This mutant is null for the regulatory Ser-Thr kinase SNRK2.1, which is required for acclimation of the alga to sulfur deprivation. The transcriptome analyses used microarray hybridization and RNA-seq technology. Quantitative RT-PCR evaluation of the result...
متن کاملCritical function of a Chlamydomonas reinhardtii putative polyphosphate polymerase subunit during nutrient deprivation.
Forward genetics was used to isolate Chlamydomonas reinhardtii mutants with altered abilities to acclimate to sulfur (S) deficiency. The ars76 mutant has a deletion that eliminates several genes, including VACUOLAR TRANSPORTER CHAPERONE1 (VTC1), which encodes a component of a polyphosphate polymerase complex. The ars76 mutant cannot accumulate arylsulfatase protein or mRNA and shows marked alte...
متن کاملThe sulfur acclimation SAC3 kinase is required for chloroplast transcriptional repression under sulfur limitation in Chlamydomonas reinhardtii.
Sulfur (S) deprivation responses have been studied extensively in algae and land plants; however, little is known of the signals that link perception of S status to chloroplast gene expression. Here, we have compared the chloroplast S limitation response in WT vs. sac1 and sac3 sulfur acclimation mutants of the green alga Chlamydomonas reinhardtii. We provide evidence that in the WT, chloroplas...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 12 شماره
صفحات -
تاریخ انتشار 2017